Sunday, June 1, 2008

NHỮNG ĐỘ ĐO THƯỜNG GẶP

Bách khoa toàn thư mở Wikipedia

1. Định nghĩa:




Trong toán học, một độ đo là một hàm số cho tương ứng một "chiều dài", một "thể tích" hoặc một "xác suất" với một phần nào đó của một tập hợp cho sẵn. Nó là một khái niệm quan trọng trong giải tích và trong lý thuyết xác suất. Một cách hình thức, độ đo μ là một hàm số cho tương ứng mỗi phần tử S của một tập σ-đại số X với một giá trị μ(S) là một số thực không âm hoặc vô hạn. Các tính chất sau đây phải được thỏa mãn:

  • Tập hợp rỗng có độ đo bằng không: mu(empty)=0,
  • Độ đo là σ-cộng tính: nếu E1, E2,... là các tập hợp chứa trong σ-đại số X, đếm được và không giao nhau từng đôi một, và nếu E là hợp của chúng, thì độ đo μ(E) bằng tổng sum_{k=1}^infty mu(E_k). Nghĩa là mu(bigcup_{k=1}^infty E_k)=sum_{k=1}^infty mu(E_k)

Nếu μ là một độ đo trên σ-đại số X, thì mọi phần tử của σ-đại số X được gọi là μ-mesurable (μ-đo được), hay đơn giản hơn là đo được. Một bộ gồm tập hợp Ω, một σ-đại số X trên Ω và một độ đo μ trên X được gọi là một không gian đo được, ký hiệu là (Ω, X, μ).

2. Tính chất:

Các tính chất sau đây có được từ các tiên đề trên:

  • Nếu E1,E2,... là các tập đo được và E1 là tập con của E2, thì μ(E1) ≤ μ(E2).
  • Nếu E1,E2,E3,... là các tập đo được và En chứa trong En+1 với mọi n, vậy thì hợp E của các tập En là đo được và μ(E) = lim μ(En).
  • Nếu E1,E2,E3,... là các tập đo được và En+1 chứa trong En với mọi n, vậy thì giao E của các tập En là đo được; hơn nữa, nếu tồn tại một tập En có độ đo hữu hạn, thì μ(E) = lim μ(En).

Một tập S được gọi là hầu như rỗng hay có thể bỏ được nếu μ(S) = 0. Độ đo μ được gọi là đủ nếu mọi tập con của một tập hầu như rỗng là đo được (một tập con như vậy thì bản thân nó cũng là một tập hầu như rỗng).

3. Tổng quát:

Trong một vài trường hợp, sẽ rất có ích nếu ta có một "độ đo" cho các giá trị không bị giới hạn chỉ ở các số thực dương và ở vô hạn. Ví dụ, một hàm σ-cộng tính được định nghĩa trên các tập hợp và cho các giá trị dương được gọi là "độ đo đảm bảo" (độ đo signée), trong khi một hàm cũng như vậy, nhưng cho giá trị là các giá trị phức, được gọi là "độ đo phức". Một độ đo cho các giá trị trong một không gian Banach được gọi là "độ đo ảo" (độ đo spectrale). Các độ đo này được dùng chủ yếu trong giải tích hàm cho định lý ảo (định lí spectral).

Về khái niệm độ đo "cộng tính" hay "trung bình", định nghĩa tương tự như định nghĩa của độ đo nhưng tính σ-cộng tính được thay bởi tính cộng tính hữu hạn. Thật ra trước đây định nghĩa này được đưa vào trước, nhưng lại có ít ứng dụng trong thực tế.

Một kết quả đáng lưu ý trong hình tích phân, được biết dưới cái tên định lý Hadwiger, phát biểu rằng: không gian các bất biến hàm qua một phép biến đổi, cộng tính, là hàm số của các tập hợp không nhất thiết dương và được định nghĩa trên hợp của các tập compact lồi trong mathbb R, được cấu thành từ các độ đo đồng nhất bậc k với mọi k = 0,1,2,...,n và tổ hợp tuyến tính của các "độ đo" này.

Tính "đồng nhất bậc k" nghĩa là "mở rộng" bất kỳ một tập hợp nào đó bởi bất kỳ một hệ số c>0 nào đó cho nhân "độ đo" của tập hợp với ck. Độ đo duy nhất có tính đồng nhất bậc n là thể tích thông thường với số chiều là n. Độ đo duy nhất có tính đồng nhất bậc n-1 là "thể tích bề mặt" và được gọi là độ đo bề mặt. Độ đo có tính đồng nhất bậc 1 được gọi là "chiều rộng trung bình" (largeur moyenne). Độ đo có tính đồng nhất bậc 0 là đặc trưng Euler.

4. Ví dụ:

Sau đây là một vài ví dụ tiêu biểu về độ đo:

  • Độ đo đếm được định nghĩa bởi µ(S) = số phần tử của S.
  • Độ đo Lebesgue là độ đo đủ duy nhất bất biến qua phép dịch chuyển trên σ-đại số chứa các các đoạn trên mathbb{R} sao cho μ([a,b]) = b-a với a<b.
  • Độ đo Haar cho một nhóm khả tô pô compact địa phương là trường hợp đặc biệt quan trọng của độ đo (chính xác hơn là độ đo Radon). Nó bất biên đối với phép dịch chuyển trong nhóm.
  • Độ đo không được định nghĩa bởi μ(S) = 0 với mọi S.
  • Mọi không gian khả xác suất đều cho phép định nghĩa một độ đo nhận giá trị bằng 1 cho tập hợp toàn thể (và cũng nhận tất cả các giá trị trong đoạn [0, 1]). Một độ đo như vậy được gọi là một độ đo xác suất. Xem các tiên đề xác suất.
5. Một số độ đo hay dùng:


+ Độ đo Lesbesgue:
Trên R độ đo Lesbesgue xác định như trên, trên R^2 là diện tích của tập A, trên R^3 là thể tích của A.


+ Độ đo xác xuất:

Một không gian xác suất (Ω, F, P) là một không gian được trang bị một độ đo với độ đo toàn thể bằng 1 (nghĩa là P(Ω)=1).

Thành phần đầu, Ω (xem không gian mẫu), là một tập không rỗng, với các phần tử thường được biết như là các "kết quả" hay "trạng thái tự nhiên" (ví dụ trạng thái sấp hay ngửa của đồng tiền,...). Một trạng thái tự nhiên luôn tồn tại với một xác suất nào đó. Một phần tử của Ω thường được ký hiệu bởi ω.

Thành phần thứ hai, F, là một tập hợp mà các phần tử của nó được gọi là các sự kiện (event). Các sự kiện là các tập con của Ω. Tập F phải thỏa mãn một vài điều kiện, đặc biết nó phải là một σ-đại số. Cùng với nhau, Ω và F tạo thành một không gian đo được. Một sự kiện là một tập hợp các kết quả hay trạng thái tự nhiên mà ta có thể xác định xác suất của nó.

Thành phần thứ ba, P, được gọi là "độ đo xác suất", hay "xác suất". Nó là một hàm số từ F vào tập số thực, cho tương ứng mỗi sự kiện với một xác suất có giá trị nằm giữa 0 và 1. Nó cần thỏa mãn các điều kiện, đó là nó phải là một độ đoP(Ω)=1.

Các độ đo xác suất thường được viết đậm có gạch, ví dụ mathbb P hay mathbb Q. Khi chỉ có một độ đo xác suất được đề cập trong bài, nó thường được kí hiệu là Pr, nghĩa là "probability of...".



+ Độ đo Borel:


+ Độ đo Borel hữu hạn:

+ Độ đo Borel xác suất hữu hạn:

+ Độ đo cân bằng:

+ Độ đo điều hòa:

No comments:

Post a Comment